Skip to main content

Tissue (biology)


Tissue (biology)   

Animal tissues


Connective tissue


Muscular tissue


Nervous tissue


Epithelial tissue


Plant tissues


  1. Meristematic tissues
  2. Permanent tissues.

Meristematic tissues


Permanent tissues



  1. simple permanent tissues
  2. complex permanent tissues
  3. special or secretory tissues (glandular).

Simple tissues[edit]

  1. Parenchyma
  2. Collenchyma
  3. Sclerenchyma
  4. Epidermis (botany)
Parenchyma[edit]
Parenchyma (para - 'beside'; enchyma - 'tissue') is the bulk of a substance. In plants, it consists of relatively unspecialised living cells with thin cell walls that are usually loosely packed so that intercellular spaces are found between cells of this tissue. These are generally isodiameteric, in shape. This tissue provides support to plants and also stores food. In some situations, a parenchyma contains chlorophyll and performs photosynthesis, in which case it is called a chlorenchyma. In aquatic plants, large air cavities are present in parenchyma to give support to them to float on water. Such a parenchyma type is called aerenchyma. Some of parenchyma cells have metabolic waste and is known as idioblast. Spindle shape fibre also contained into this cell to support them and known as prosenchyma , succulent parenchyma also noted.
Collenchyma[edit]
Sclerenchyma[edit]
Epidermis[edit]

Complex permanent tissue[edit]

Xylem[edit]
Phloem[edit]
Phloem is an equally important plant tissue as it also is part of the 'plumbing system' of a plant. Primarily, phloem carries dissolved food substances throughout the plant. This conduction system is composed of sieve-tube member and companion cells, that are without secondary walls. The parent cells of the vascular cambium produce both xylem and phloem. This usually also includes fibers, parenchyma and ray cells. Sieve tubes are formed from sieve-tube members laid end to end. The end walls, unlike vessel members in xylem, do not have openings. The end walls, however, are full of small pores where cytoplasm extends from cell to cell. These porous connections are called sieve plates. In spite of the fact that their cytoplasm is actively involved in the conduction of food materials, sieve-tube members do not have nuclei at maturity. It is the companion cells that are nestled between sieve-tube members that function in some manner bringing about the conduction of food. Sieve-tube members that are alive contain a polymer called callose, a carbohydrate polymer, forming the callus pad/callus, the colourless substance that covers the sieve plate. Callose stays in solution as long as the cell contents are under pressure. Phloem transports food and materials in plants upwards and downwards as required.

Mineralized tissues




History of the concept[edit]







READ MORE ON THIS TOPIC
nervous system

Plants

In vascular plants, such as angiosperms and gymnosperms, cell division takes place almost exclusively in specific tissues known as meristemsApical meristems, which are located at the tips of shoots and roots in all vascular plants, give rise to three types of primary meristems, which in turn produce the mature primary tissues of the plant. The three kinds of mature tissues are dermal, vascular, and ground tissues. Primary dermal tissues, called epidermis, make up the outer layer of all plant organs (e.g., stems, roots, leaves, flowers). They help deter excess water loss and invasion by insects and microorganisms. The vascular tissues are of two kinds: water-transporting xylem and food-transporting phloem. Primary xylem and phloem are arranged in vascular bundles that run the length of the plant from roots to leaves. The ground tissues, which comprise the remaining plant matter, include various support, storage, and photosynthetic tissues.

Animals

Early in the evolutionary history of animals, tissues became aggregatedinto organs, which themselves became divided into specialized parts. An early scientific classification of tissues divided them on the basis of the organ system of which they formed a part (e.g., nervous tissues). Embryologists have often classified tissues on the basis of their origin in the developing embryo; i.e., ectodermal, endodermal, and mesodermal tissues. Another method classified tissues into four broad groups according to cell composition: epithelial tissues, composed of cells that make up the body’s outer covering and the membranous covering of internal organs, cavities, and canals; endothelial tissues, composed of cells that line the inside of organs; stroma tissues, composed of cells that serve as a matrix in which the other cells are embedded; and connective tissues, a rather amorphous category composed of cells and an extracellular matrix that serve as a connection from one tissue to another.
The most useful of all systems, however, breaks down animal tissues into four classes based on the functions that the tissues perform. The first class includes all those tissues that serve an animal’s needs for growth, repair, and energy; i.e., the assimilation, storage, transport, and excretion of nutrients and waste products. In humans, these tissues include the alimentary (or digestive) tract, kidneys, liver, and lungs. The digestive tract leads (in vertebrates) from the mouth through the pharynx, stomach, and intestines to the anus. In vertebrates and some larger invertebrates, oxygen and the nutrients secured by the alimentary tissues or liberated from storage tissues are transported throughout the body by the blood and lymph, which are themselves considered by many to be tissues. Tissues that secure oxygen and excrete carbon dioxide are extremely variable in the animal kingdom. In many invertebrates, gas exchange takes place through the body wall or external gills, but in species adapted to a terrestrial life, an internal sac capable of expansion and contraction served this purpose, and gradually became more complex over evolutionary time as animals’ demand for oxygen increased.
The third class of tissues includes those contributing to the body’s support and movement. The connective tissues proper surround organs, bones, and muscles, helping to hold them together. Connective tissues proper consist of cells embedded in a matrix composed of an amorphous ground substance and collagen, elastic, and reticular fibres. Tendons and ligaments are examples of extremely strong connective tissues proper. The other major structural tissues are cartilage and bone, which, like connective tissues proper, consist of cells embedded in an intercellular matrix. In cartilage the matrix is firm but rubbery; in bone the matrix is rigid, being impregnated by hard crystals of inorganic salts. Muscle tissue is primarily responsible for movement; it consists of contractile cells. There are two general types of muscle: striated muscle, which moves the skeleton and is under voluntary control; and smooth muscle, which surrounds the walls of many internal organs and cannot normally be controlled voluntarily.

LEARN MORE in these related Britannica articles:

AahTowfiq AahTowfiq Welcome To Oure Site <!-------------- stylesheet --------------------
atps.plus@gmail.com
Welcome To Oure Video Home --> Next
Aah towfiq of form
Input number here: Answer:
AahTowfiq

©Aah.Towfiq

®Atps.Plus™




call:- +8801978698786

Comments

Popular posts from this blog

Medical About

Open main menu ©Aah.Towfiqβ Search Edit Watch this page Read in another language Medicine This article is about the science of healing. For medicaments, see medication. For other uses, see Medicine (disambiguation). "Academic medicine" redirects here. For the journal, see Academic Medicine (journal). Medicine  is the science and practice of the diagnosis, treatment, and prevention of disease. Medicine encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatmentof illness. Contemporary medicine applies biomedical sciences, biomedical research, genetics, and medical technology to diagnose, treat, and prevent injury and disease, typically through pharmaceuticals or surgery, but also through therapies as diverse as psychotherapy, external splints and tr...

Welftion Application Form

click Now And Please LIKE COMMENT Facebook   Twitter   Instagram   Linkedia   WhatsApp   imo   Google Site   Facebook  Group   YouTube   Mesanger   Google  Search  Welftion Human Welfare  Association  Search     ওয়েলফশন মানবকল্যাণ সংঘ সার্চ ওয়েলফশন Loading… Loading… ওয়েলফশন তোমার আমার সংগঠন।  #Welftion #وعلفشن #ওয়েলফশন    " Stay connected with us"  আমাদের সাথে যুক্ত থাকুন   Twitter :- https://www.twitter.com/welftion  🚩Page : https://www.facebook.com/WELFTION  🔗 https://sites.google.com/view/welftion/  Websites Pest On :  HTML :-  <iframe src="https://docs.google.com/forms/d/e/1FAIpQLSccW2Mo7HQUDRLk9HRJxLyWvWvFhqNHkCseWv9-naFu1fXJcA/viewform?embedded=true" width="640" height="1508" frameborder="0" marginheight="0" marginwidth="0">Loading…</iframe> html °° Blog &  Website : <iframe src="https://docs.goo...

welftion

©Atps.©     #Welftion #ওয়েলফশন #وعلفشن || Welftion ওয়েলফশন   بِسْمِ اللّهِ الرَّحْمـَنِ الرَّحِيمِ  "সততায় আমরা" "কল্যাণে আমরা" "শান্তিতে আমরা"   ওয়েলফশন ~ মানবকল্যাণ সংঘ   বিশ্বের কল্যাণকামী মানুষের একটি সম্মিলিত সংগঠন।   প্রবর্তন : ০৪ ফেব্রুয়ারি ২০১৯ খ্রিঃ  E-mail : welftion@yahoo.com  ভূমিকাঃ সংগঠন একটি সামাজিক প্রক্রিয়া। যেখানে একদল মানুষ একটি সাংগাঠনিক কাঠামোর অন্তভুক্ত হয়ে নিদিষ্ট কিছু লক্ষ্য ও উদ্দেশ্য বাস্তবায়নে সর্বদা নিরন্তর। ওয়েলফশন - মানবকল্যাণ সংঘ এর ব্যাতিক্রম নয়। ওয়েলফশন একটি মানবসেবা ও মানব উন্নয়ন মূলক সামাজিক সংগঠন । যেখানে বিশ্বের কল্যাণ কামী দল & ব্যক্তি একত্রিত হয়ে। স্ব স্ব এলাকার শিক্ষা সচেতনতা, বেকারত্ব দূরীকরণ, আর্থ-সামাজিক উন্নয়ন,ক্রিয়া, সাংস্কৃতিক পরিবেশ, আত্ম-কর্মসংস্থান, মানবাধিকার এবং সারাবিশ্বে শান্তি প্রতিষ্ঠাসহ পারষ্পরিক সহযোগিতা, সহমর্মিতা ও ভ্রাতৃত্বের সেতু স্থাপন তথা আদর্শ সমাজ জীবন গড়ে তোলার দৃঢ় প্রত্যয়ে সামাজিক, উন্নয়নশীল ও উন্নয়নমূলক স্বেচ্ছাসেবী সংগঠন হিসেবে সততা ও কল্যাণের মাধ্যমে শান্তি প্রতিষ্ঠার ল...